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Fey's Method of TransportMoT) is a multidimensional flux-vector-splitting
scheme for systems of conservation laws. Similarly to its one-dimensional fore-
runner, the Steger—Warming scheme, and several other upwind finite-difference
schemes, thd/oT suffers from an inconsistency at sonic points when used with
piecewise-constant reconstructions. This inconsistency is due to a cell-centered evo-
lution scheme, which we calloT-CCE that is used to propagate the waves resulting
from the flux-vector-splitting step. Here we derive new first-order- and second-order-
consistent characteristic schemes based on interface-centered evolution, which we
call MoT-ICE We prove consistency at all points, including the sonic points. More-
over, we simplify Fey's wave decomposition by distinguishing clearly between a
linearization and a decomposition step. Numerical experiments confirm the stability
and accuracy of the new schemes. Owing to the simplicity of the two new ingredi-
ents of theMoT-ICE, its second-order version is several times faster than that of the
MoT-CCE (© 2000 Academic Press
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1. INTRODUCTION

Since the work of Godunov [13], Van Leer [42], Harten—Lax [14], and Roe [35], th
numerical solution of systems of hyperbolic conservation laws has been dominated
Riemann-solver-based schemes. This approach has been called flux-difference split
since the difference of two fluxes is decomposed into one-dimensional waves. These ¢
dimensional schemes are usually extended to several spatial dimensions either by
dimensional-splitting on Cartesian grids or by using the finite-volume approach on t
structured grids. For both approaches, convergence and error estimates have been ¢
lished for multidimensionakcalar conservation laws; see for example the results an
references in [2, 4, 17, 28, 29, 41, 46]. Naturally, there are no comparable results
multidimensionabkystemssince no existence and uniqueness of the p.d.e.’s is known in tf
case.

The first systematic criticism of using one-dimensional Riemann solvers for multidime
sional gasdynamics goes back to Roe himself [36]: the Riemann solver is applied in
grid rather than the flow direction, which may lead to a misinterpretation of the local wa
structure of the solution. LeVeque and Walder [22] present difficulties of Godunov's sche
for strong two-dimensional shock waves arising in astrophysical flows and propose the
of rotated Riemann solvers. In [27, 37] Roe and Noelle study oscillations generated
dimensional-splitting schemes for a prototype linear system. A description of a numbel
failings of exact and approximate Riemann solvers for the two-dimensional Euler equati
of gasdynamics, in particular the “odd—even decoupling” and the “carbuncle” phenomen
may be found in Quirk’s paper [34]. Recently, several authors have analyzed instabilitie:
one-dimensional flux-difference-splitting schemes for Quirk's examples (cf. [32, 47] al
the references therein).

Since the mid 1985s, Roe, Deconinck, Van Leer, and many others have developed th
called fluctuation-splitting schemes for the equations of gasdynamics (see [5, 44, 45]). O
multidimensional approaches include Colella’s Corner-Transport-Upwind (CTU) schel
[3], LeVeque's CLAWPACK [18, 21], and the Weighted-Average-Flux (WAF) scheme ¢
Billet and Toro [1].

In this paper we focus on Fey’s Method of TranspMbd(') [7—11]. TheMoT belongs to
the family of flux-vector-splitting schemes firstintroduced by Sanders and Prendergast |
and Steger and Warming [40]. Instead of decomposing the divergence of the flux vectol
in the fluctuation-splitting schemes of Rekal,, one splits the conservative variables and
the flux vector themselves. In the original version of F&T [7], the acoustic waves were
integrated over the entire Mach cone in two dimensions, and hence the scheme coul
interpreted as an Euler-Characteristic-Galerkin method (see [31] and [24] for recent rele
progress). Subsequently Fey, Jeltsch, and collaborators simplifidtbthand expanded it
in various directions (see [8-11, 25, 26]).

The starting point of this work are the papers [9, 11]. In these paperd/dfictakes
the following form: Step 1. A multidimensional wave model leads to a reformulation of tf
conservation law as a finite set of coupled nonlinear advection equations. Step 2. At
beginning of each timestep, the system is linearized and decomposed into a set of lii
scalar advection equations with variable coefficients. Step 3. The solution of each lin
advection equation at the end of the timestep is computed using a characteristic sche
Step 4. The solution is projected back onto the conservative variables using the wave m
of Step 1.
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Our own contribution to Fey’s method may be summarized as follows: Given a multic
mensional wave model (Step 1), we simplify Step 2 by distinguishing clearly between
linearization and the decomposition step. This makes it possible to write down a gen
second-order-correction term for the decomposition error in a single line. Then we disc
the first-order version of Fey’s characteristic scheme (Step 3) and show an inconsisten
the numerical scheme on the level of the linear advection equation. Subsequently, we d
new and particularly simple characteristic schemes based on piecewise-constant (re:
tively piecewise-linear) reconstructions and prove that they are uniformely first- (resp
tively second-order-) consistent. To apply these characteristic schemes to nonlinear sys
of conservation laws, one needs to predict the solution at the interfaces between the ce
the computational domain at the half-timestep. At this stage we use flux-difference-splitt
techniques to stabilize discontinuous solutions.

Owing to the simpler second-order-correction term for the decomposition error and
simplicity of the new characteristic scheme our second-order scheme is several ti
faster than Fey’s scheme and seems to be competitive with state-of-the-art second-
algorithms.

Even though we only present numerical experiments in two spatial dimensions, i
possible and in fact straightforward to generalize our new scheme to the three-dimensi
case (see the Remark following Definition 3.2, in particular Eq. (87)).

Fey’stransport algorithm might be callbtbT-CCE since his advection scheme uses cell-
centered evolution. We call our new scheme, which is based on interface centered evolu
MoT-ICE When combined with piecewise-constant (respectively linear) reconstructiol
we call the schemeR0 (respectivelyP1).

The paper is organized as follows: In Section 2.1, we recall Fey’s multidimensional we
models. In Section 2.2, we derive our second-order-accurate linearization and decon
sition. In Section 3.1, we present a class of characteristic schemes for linear advec
equations with variable coefficients. In Section 3.2, we show the inconsistencyMbthe
ICE-PQ. In Section 3.3, we present tMoT-ICEand prove uniform first-order (respectively
second-order) consistency of thieT-ICE-PO(respectiveyMoT-ICE-PJ). In Section 4, we
generalize the method to systems of conservation laws. We give full details of first-
second-order-consistent algorithms in two spatial dimensions and prove their consiste
In Sections 5.1-5.5, we present numerical experiments. The comparison of cpu time
given in Section 5.6. In Section 6, we summarize our results.

Some of the results of this paper have been announced, but not proved, in [30].

2. DECOMPOSITION OF MULTIDIMENSIONAL SYSTEMS OF CONSERVATION
LAWS INTO ADVECTION EQUATIONS

In this section, we recall Fey’s advection form for multidimensional systems of cons
vation laws and give a general second-order-accurate linearization and decompositic
systems which can be written in advection form.

2.1. A General Framework for Multidimensional Flux-Vector Splitting

Consider a multidimensional systemrafconservation laws id spatial dimensions,

&®U+V-FU) =0, @
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whenU: RY x R, — & c R™ is the state vector ané: &/ — R™Y is the flux. We will
always denote column vectors in state spifeoy bold capital letters and row vectors in
physical spac& by underlined small letters. Note that the divergence acts on the rows
E=(F1,...,Fq).

ExamMPLE 2.1. We start our discussion with a very brief review of the Steger—Warmir
flux-vector splitting for the Euler equations of gasdynamics in one dimension. All we ne
to know at the moment about the Euler equations isFg8f) is homogeneous of degree 1
in U, and sd~(sU) = sF(U) for all reals. Differentiating with respect te and evaluating
ats = 1 gives

F(U) = F/(sUW)Uls=1 = F(U)U, )

whereF’ is the Jacobian matrix df. Since the system is hyperboli€,(U) possesses
real eigenvalueg (U) and a complete set of eigenvect@iRg (U), ..., Rm(U)}, and so we
may projectU onto these eigenvectors,

U=) sURU) =) S(O). 3)
I=1

1=1

Heres (U) are uniquely defined real coefficients. From (2) and (3) we obtain

FU) =FU))Y sWRU) => aWsURU) => aW)sUV). @
1=1

1=1 = =1

Thus we can split both the state vector and the flux vectonirarts S (U) anda (U)S (U),
which we will call components in the following. Using this decomposition we rewrite th
Euler equations as a sum of advection equations,

D @S U) + d(a U)S (U)) = 0. (5)

I=1

For a more detailed exposition as well as the definition of the Euler equations we refer
reader to [9, 40].

In [7, 8], Fey generalized the one-dimensional Steger—Warming splitting to the mul
dimensional Euler equations by integrating a set of suitably modified one-dimensio
decompositions over all possible directions of propagation (e.g., the Mach cone for
acoustic waves). Ostkamp [31] showed that the resulting algorithm is closely related tc
Euler Characteristic Galerkin method (compare also [24]). Since the integration over
Mach cone was computationally rather expensive, Fey, Jeltsch, and collaborators [9-
went on and replaced the integration of the accoustic waves over the Mach cone by a
over finitely many waves. In this way, they arrived at the following abstract framework f
multidimensional flux-vector splitting:

DerINITION 2.1. A wave-modefor (1) is a set ofL > 1 continuously differentiable
mappingsS € C1U, R™) (called waves) and, € C*(1/, RY) (called advection velocities),
| =1,...,L,suchthatthe following two consistency conditions are satisfied far alt/:
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(i) consistency with the state vector,

M-

SU)=U, (6)

1=1

(i) consistency with the flux vector,

L
> S U V) =FU). 7

=1

Given a wave model, the conservation law (1) may be rewritten in the folloadrgction
form:

L

D @GS U) + V- (SWaU)) =0. ®)

=1

Thus we decompose the state vedtbinto L wavesS (U), which are then transported
with the advection velocitieg (U). Motivated by the Steger—Warming splitting for the one-
dimensional Euler equations, one may think of the wayéd) and the advection velocities
3, (V) as generalized eigenvectors and eigenvalues of the Jacobian mat¢ides

Before we discuss how to use the advection form numerically, let us give some exam|
of multidimensional wave models.

ExampLE 2.2. Consider a hyperbolic system (1) with homogeneous flux
E) = AU)U = (A (U)U, ..., Ag(U)V), 9)
where
AjU)y=F,V), j=1...d, (10)

are the Jacobians of the components-dfl ). We assume that the system is hyperbolic

so that each matri¥d; (U) is diagonalizable with real eigenvaluag (U),| =1,..., m.
Furthermore, we even suppose thatthgU) are simultaneously diagonalizable (i.e., they
commute). Then they havecammorcomplete set of eigenvectoRg(U),l =1,..., m.

Now we can split the state and the flux vector analogously to the Steger—Warming sj
ting: we project the state vectbronto the eigenvectors,

U=> sURU) =Y S, (12)
1=1

=1

and immediately obtain the consistency relation (6). For the corresponding advection
locities we choose thigh eigenvalues of the matrices; (U),

aU) = @), ...,au)), (12)
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and easily verify the consistency with the flux (7),

D SUaU) =) (SURIU)a W)
1=1

=

s (U)@u(URi(U), ..., a (VR (U))

1= 1Mz

S ALWR V), ..., As(U)R(U))

Il
[iN

I
3~

I=1

) (Z s(UR, <U>>

Il
[

(VU
L. (13)

Il
T

Note that ifF(U) is linear, we even have
aSWU)+V-(§UV)a) =R[ksU) +V-(s(U)a)] =0 (14)

for each summand of (8) separately, which is the standard decomposition of a diagonaliz
linear hyperbolic system into advection equations.

ExampPLE 2.3. As an example of a nonhomogeneous system with noncommuti
Jacobians, let us consider the equations of two-dimensional isentropic gasdynamics,

P+ (pWx + (pv)y =0
(pWr + (pUZ + 1cp” )x + (pUv)y = 0 (15)
(pV)t + (puv)y + (pv? + kp?)y = 0

with « > 0 andy > 1, wherep is the mass density = (u, v) is the velocity vector, and
the sound velocity is given by

ci= (ykp” HY2 (16)

Now we may write

2
u=p(u1T), E(U)=Uu+%<?), (17)

where 0= (0, 0) and] is the 2x 2 unit matrix. Note thapc?/y is the pressure. Following
Fey’'swork [9] on the nonisentropic Euler equations, Morel [26] gives the following splitting

LEMMA 2.1. ForL e Nletn e R?,1 =1, ..., L, be vectors satisfying

L
Z[h =0 (18)

1 L
Coonim=1 (19)
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Here n'n, = n; ® n, denotes the tensor product. Then the waves

1 pc /0
U =-U+-— 20
sw=gu+ () (20
and advection velocities
aU) :=u+cn (21)

satisfy the consistency relatio®) and (7).

The proof follows immediately from (17), (18), and (19).
As a particular case, one may chodse- 4 and

n e {(11 1)1 (11 _1)s (_17 1)7 (_1’ _1)} (22)

(this is the choice in [9, 26], and we will use this choice in the numerical experimer
in Section 5). In this case the componeaigU) anday (U) of the advection velocities
coincide with the eigenvalues+ c andv + ¢, and we may interpret the waves as acoustit
waves.

Note that if all then; have the same length, then (19) implies timat = +/2, and|n|| =
Vd in d spatial dimensions. However, if tg were unit vectors, then th& (U) anda, (U)
would coincide with the eigenvectors and physical speeds of propagation in the direc
n; as naturally happens in the one-dimensional situation. In this case, however, condi
(19) and hence (7) would be violated. One can also rule out this inconsistent choice u:
the following heuristic stability argument: Let us compare the choiag of (22) with the
alternative choice

n € {~/0.5(1, 1), v0.5(1, —1), vV0.5(-1, 1), vV0.5(—1, —1)} (23)

(so|n| = 1 in the latter case). Following the stability argument of Courant—Friedrich:s
Lewy, we see that the domain of influence of the wave model should certainly contain t
of the conservation law. We will see that this is true if the@re chosen by (22) but violated
if they are chosen by (23) (see Fig. 1).

i

Qo tu QO tu x

FIG. 1. The squareQ,, its domain of influence according to the conservation law (rounded square in sol
lines, centered afu, v)), and the domain of influence of the wave model, which is the union of the four squar
Qi ..., Q. (broken lines). Leftin| = +/2. Right:|n;| = 1 (note that in this cas&®,, ..., Qg, all of which are
translations ofQo, overlap).
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So suppose that data are given in some axiparallel s§@angéth cornerg—r, —r), (r, r).
The domain of influence of the linearized isentropic Euler equations is the set of all poi
which are contained in the Mach cone emanating fi@gi.e., the union of all disks of
radiustc and with centers ifQ + t (u, v). This is the square with rounded corners centere
att(u, v), shown by a solid line in both figures. Let us denote thidvhySuppose now that
for the wave model, we have constant wagsnd advection velocitieg, and transport
each wave in the directia® for some time;, such thatc < r. Then the domain of influence
of the squareQ (according to the wave model) will be the union of the four axiparalle
squaresQ, = Qo +ta,l =1,...,4. Let us denote this union b@: U|4:1 Q. In the
first case(|n|| = v/2; left figure),dcoincides with the smallest axi parallel square which
containsM, while in the second cag¢gn,| = 1; right figure)(i is strictly smaller tharivi
and hence the wave model may be unstable.

We would also like to recall from [9] that one may modify the wave models of Lemma 2
using instead the waves

0
) (24)
and advection velocities
c
aU)=u+-n (25)

for any nonzera € R. Note that this wave model allows arbitrary advection velocities
Consistency is verified immediately for al] but the above stability consideration should
be used to determine physically reasonable choices of the velocities.

It is well known that the equations of multidimensional gasdynamics cannot be dic
onalized simultaneously. Therefore, we cannot expect the summands of (8) to be :
individually. To see this, we set

*SU)+ V- (SWa W) = —=SU)V-EU) + V- (SU)a L))
=T, (U, VU), (26)

where’ denotes differentiation with respectltband we have used the conservation law (1)
to replace time by space derivatives. From (8), we see that

L
> TiU.vU) =0 (27)
I1=1

if U solves the conservation law. As a side remark, we note that this holds for any smc
functionU,

L L
D TiU.VU) =D (=S(U)'V-FU) + V - (S (U)a (U)))
1=1

=1
=UV.FU) -V -EU) =0,

sincel’ is the identity matrix irR™ ™.
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Now we use (17), (20), (21), (25), and the notatmpr= (¢, 5) and obtain after a tedious
computation

VTHO" 0 0
c cpu 1 c
T = x VTJrluoq + (af = 1)c P %O” PP 1 o
L L L L o
v +aific % A !
VTHﬁ 0 0
co cpu cov -1
+ Ty L + o pic + Ty B 3 Y| e | (28)
0 1
2B + (B - 1)c 2 B

One can seeimmediately that this is in general nonzero. We will usetheseur numerical
experiments for the shallow-water equations in Section 5.

Examples of wave models for other conservation laws, including the wave equati
the Euler equations, and the equations of ideal magnetohydrodynamics, may be four
[11]. Common to all of them is a finite set of acoustic waves which approximate the Ma
cone (typically four waves in two spatial dimensions). For the Euler equations one a
an entropy wave, and for the MHD equations, one adds the twaeAlarid possibly some
slow magneto-acoustic waves. We refer the reader to [9, 11] for a more detailed discus:

For the equations of gasdynamics, wave models may be derived systematically fro
kinetic formulation by replacing the Maxwellian distribution function by a sum of Dirac
masses (see [48]).

We remark that the wave models presented here are fundamentally different from tf
introduced in the context of fluctuation-splitting schemes by Roe, Deconinck, and oth
(see [5, 36] and references therein). In the context of fluctuation-splitting schemes,
divergence of the flux vectoY, - F(U), is split into waves, while here the state vedtoand
flux vectorF(U) themselves (and not their derivatives) are decomposed. This is the cruc
difference between flux-difference- and flux-vector-splitting schemes.

From now on, we assume that a system of conservation laws and a wave model consi
with that system in the sense of Definition 2.1 have already been chosen.

2.2. Decomposition into Advection Equations

Let us now see how the advection form (8) can be used when solving the initial va
problem (1) with datdJ given at timet, = nk, wherek = At is the timestep. Our aim is to
develop algorithms which asecond-order accurate time and space for smooth solutions
and are nonoscillatory at discontinuities. For the rest of this section, we assume that
solutionU is smooth. Hence our accuracy requirement means that after a single timeste
timet,;1 = t, + k, the difference between the exact and the approximate solution sho
be of O(K?t1).

First we consider a linear, diagonalizable hyperbolic system (see Example 2.2 above)
one needs to do in this case is to solvelthe m scalar equations (14), which can be done
exactly. For general systems, this approach encounters two difficulties: first, in general
advection velocitieg, (U) depend on the solution itself; so they are not known in advanc
Second, as we have proved for the equations of isentropic gasdynamics, we cannot e;
that each summand, (U, VU) occuring in (8) is equal to zero individually. Recall that
T (U, VU) was defined in (25).
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In[9], Fey freezes the advection velocities at the original timetgtapd then solves each
component of (8) separately (with frozen velocities). Thus he has to $olvem linear
advection equations, now with spatially varying coefficients. At the end of the timeste
the approximate solution is obtained as the sum oveltheaves. This procedure leads
to first-order in time linearization and decomposition errors, which are then removed
a suitable modification of the initial data to obtain a second-order in time linearizati
and decomposition. Zimmermann [48] points out that for the equations of gasdynar
this procedure is analogous to certain kinetic schemes [6, 33], where the collisionl
Boltzmann equation is solved during one timestep, and then the solution is projected ¢
the corresponding equilibrium states by integrating (summing) the velocity distributi
function. For kinetic schemes, the technique to modify the initial data to obtain secol
order accuracy in time has been proposed by Deshpande [6].

We now study the linearization and decomposition errors separately and propose a slig
modified linearization and decomposition. Our next lemma shows that freezing the velo«
field at the half-timestefy,.1» = tn + k/2 gives a second-order-accurate linearization. W
denote the frozen advection velocities&yand the solution of the linearized system\by

LEMMA 2.2 (Linearization). LetU be a smooth solution @fl), k = At > 0. Let
V:RY x [tn, th + k] - R™

be the solution of the initial value problem

&V +V- zm:(S (V)a) =0 (29)
V(tnl)zlz U(tn), (30)
where the auxiliary velocity field&: RY — RY,1 =1, ..., L, satisfy
& (x) =g (u (x, th + ';)) +O(K). (31)
Then
V(th + k) — Uty + k) = O(K3). (32)

Note that the approximate transport velocitigsare nowprescribedcoefficients which
depend on space but not on time. In practice, they will have to be evaluated by a predi
step at the half-timestefa,1/2; see Section 4. System (29) is stibnlinearin V. It is,
howeverlinear in the components§ (V), since

L
AV =D xS V).
=1

This will become clear once we have decomposed (29) into its components; see (33)
(38) below.
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Proof. The proof follows by expanding the solutioki'sof (29), (30) andJ of (8) into
Taylor series with respect to time. A= t, we compute

U =-V-FU)=-V-) SUaWU)

U ==V ) (SWUia (U) + S (U)g (U))

Vi=-V-Y S\)&

Vie ==V > SVIVi& = -V > (SV)Via (U)) + O(K).

Therefore, using (31) ardil () = a (U(X, t)) + §da (U(X, tn)) + O(k?) we obtain

~ k
Vi—Ui=-V.} SU@E-aU)=-V-) SUaWU)+0K)
Vit — Uit = =V - Y (SU)(V: — Upa (U) — S (U)a (Un) + OK)
=V SUa Uy +0K.

It follows that

Vita + k) — Uty 4+ K) = (V — Uy + k(Ve + Up) + %k%vn U + OGS

o= ) DTNV SETTEN RIS
=0K>3. m
As a corollary to the proof, we note that if we had frozen the velocity field at the beginnil
of the timestept = t,), then the linearization would have been only first-order accura
in time. Our linearization corresponds to integratidld = —V - >~ S (U)a, (U) from time
ty to th11 using the midpoint rule in time for the advection velocitiggU) and exact
integration for the waves§ (U).
Next we consider the decomposition error. First, we simply decompose the lineari:

advection form (29) by setting each summand to zero separately, denoting the solutio
the resulting system by and its components by,

L
W= Wit RY x [to, th + k] —> R™.
=1

Now we suppose that eatl; solves the linear initial value problem
oW, +V-(W§)=0 (33)
Wi (th) = S(U(th) = S(V(t)). (34)
Then at time = t,
W, -V, =0
Wit — Vit = =V - ) (Wi — S(VIVDE

=v- 3 (v-wia) -§Wv- (Y sava) ) a
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=V-) (V- (SUa L) - SWU)V-FU)& + 0K
=V-) (V- (SUa L) + S UWUE + Ok
=V-) (SUX+ V- (SnU)aU))a + Ok)
= V- T, VU + 0K,

where we have used the definition (25)19fU, VU). Therefore

2 L
W(th +K) — V(ta + k) = I%V Y _TiU, VW& + O(K®). (35)
I=1

We now modify the initial data dfV to obtain a second-order-accurate linearization an
decomposition. The most straightforward modification, repla®ifg,) by

K & N
Uty + 5V > TiU, VU,

=1

would require computing second numerical derivatives of the conservative variables. E
worse, it would violate the conservation principle. The same criticism applies if we repla
the initial data for each componeWwt, (t,) by

k2
SUt) + ?V (T (U, VU)a).

Instead, we replace/ (t,) by

k
SU(t)) + §T| (U(tn), VU(tn)). (36)
Then we do not need to compute second derivatives, and conservation is guaranteed
by (27),>" T\ (U(ty), VU(tn)) = 0, and so

L

k
3 (s (Ut) + 5TH(U(h). vuam) = Uty). (37)

=1

In the following theorem, we prove that this modification of the initial data indeed give
second-order accuracy. The crucial point is that it leads to a modified first derivative
the approximate solution. We denote the solution of the modified probleé &yd its
components by.

THEOREM 2.1 (Second-Order-Accurate Decompositior)et
L

Z:=> Z:Rx[th,ty+ K — R"
1=1

be the solution of the initial value problem
&Z +V-(Z1&4) =0 (38)

k
Zi(t) = S(U(t) + éTl(U(tn), VU(tn)). (39)
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Then
Z(th + k) — Uty + k) = OKd). (40)

Proof. As before, we expand(t) in a Taylor series. At timeé = t,,, we obtain

Zi =-V. ZZ@

Zy =—-V- Z(Zl)tﬁl,

and therefore
k
— = — —T \% - =
Z-V Z(S(U)+2|(u, U>) U=0

k
Zi—Vi=-V-Y_ (s L)+ 5T, VU) = S(U)) &

—gv DY TIU, VU)E,

Zy =V ==V > (@i — SV
=V (V- @8-SV Y sWd) &
=V-> (V- (SWU)aU)) - SWU)V -FU)E + Ok)
=V-) Ti(U,VU)4 + O(K).

This implies that
Z —V)(th + k) = 0K,

and (40) now follows from (32). m

Let us mention once more that for the Euler equations and the shallow-water equati
Morel, Fey, and Maurer have also derived a second-order-accurate decomposition into li
advection equations. However, since they freeze the advection velocities at the begin
of the timestep, their linearization is only first-order accurate in time. As a consequer
they have to add correction terms for a mixed linearization and decomposition error, wt
results in a solution that is computationally more expensive than ours. Note that, recel
Zimmermann [48] has derived a different decomposition for the Euler equations whict
related to second-order kinetic schemes and evaluates the velocities at the half-timest
well.

3. SOLVING THE ADVECTION EQUATIONS BY CHARACTERISTIC SCHEMES

The linearization and decomposition given in the previous section leads us, at the be
ning of each timestep, to a set of scalar transport equations of the form

&+ V- (pa) =0. (41)
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In this section, we discuss several ways to discretize (41). In Section 3.2, we show
a notorious inconsistency at sonic points, which is well known for several finite-volun
schemes, appears also for a standard first-order discretization of (41). In Section 3.3
modify this discretization and prove first- and second-order consistency of our new mett

For the rest of this section, we assume that the velocity &igkf x R, — R is a given
smoothfunction of x andt. In Section 4 we will indicate how to tre@iecewise smooth
velocity fields, which arise from the discretization of the full system of conservation laws (:

The scalar functio: R x R, — R is the unknown, and initial data are prescribed a
t =t,:=nk,

(X, th) = gp(X). (42)
Equations (41), (42) may be solved by introducing the characterigtic, t) by

£ Ry xR x Ry - R
Et; X, 1) =X (43)

9:6(t; x, 1) = al(r; x, 1), 7).

Since the flux vectopa is always parallel to the characteristics, we have the following:

LemvmAa 3.1. ForallK c RY t, 7z e R,

:—T / p(X,7)dx =0. (44)

&K\

3.1. Characteristic Schemes

We would like to use Lemma 3.1 to construct numerical methods for solving (41). F
simplicity, we restrict the analysis from now on to two spatial dimensions and use t
notationx = (x, y) € R? for the space variable, = (a, b) € R? for the velocity field, and
& = (&, n) forthe characteristics. In the Remark following Definition 3.2, we will generalis
our new scheme to an arbitrary number of space dimensions and indicate the treatme
curvilinear grids.

Fori,j € Zlet(x;, y;j) := (ih, jh) be the points and let

Kij i= [Xi—1/2, Xi+12] ¥ [Yj-1/2: Vi+1/2]

=[x —h/2,x +h/2] x[y; —h/2,y;j + h/2] (45)

be the cells of a uniform Cartesian grid with mesh sgaee Ax = Ay. Recall thak = At
is the timestep. Lemma 3.1 gives

/ PX, thr) dx =) / (X, th)ydx | . (46)

Kij i] Kirjs N(tn: Kij . ths1)

Note thatK;.j; N &(tn; Kij, thy1) is that part ofKjj. that will be mapped tK;; by the
characteristic flow from timg, to timet,,; (see Fig. 2).
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FIG.2. Backward characteristic transport of cklj for the case, b > 0. The region bounded by the curved
lines is (t,; Kij, ta11), and the dotted lines are backward characteristic curves issuing from the corners of «
Ki;. The dashed lines are the grid lines.

DEeFINITION 3.1. Let<p7i} be an approximation of the cell average of the solution of th
linear advection equation (41) at timyg

1
g~ —— | e th)dx (47)
IKij | Jx;

and let theNavegE:/jj, approximate the flow from ceK; j to cell K;; from timet, to time

tn+1,

. 1
.~ / (X, ) dx (48)
TKGj T 0 (s Kt

A characteristic schemfor (41) is then given by

1
¢) = —— [ ¢p()dx (49)
IKij | Jk;;

=Y (50)
i’
We always assume tlmonservativityproperty

Z% =4, (51)

where the wave&, i " are defined as in (48).

Remark. (i) Definition 3.1 is essentially due to Fey. Note that the Wap{és aTndgo“iLj'i/
may be interpreted in two ways: Eq. (50) states that the cell averag@wér cellK;; at
the new timet,,; is a sum of Waves)"_ which flow from all neighbors;;. (including
@', j) = (@, J)) into the cellK;;. The dual interpretation is given by (51) the cell-average
of ¢ over cellK;; at the old timet, may be decomposed into Wavg?' “which flow out of
the cell to the neighborK;/; .
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(i) Using (51) the update (50) may be rewritten in the conservative form

At =al+> (@ ey (52)
i

One may think of the quantityii,j; - ﬂ'j'j/ as an approximation of the integral of the flux
between cellK; j andK;; over the time intervaltf, tn4].

(iii) In the numerical algorithms presented below, the approximation of (48) will com
in two steps. The first step will be a spatial reconstructiop©ft,) by piecewise constant
or piecewise linear functiongr. We will label the corresponding schemi® and P1
respectively. The second step will be the approximation of the characteristid<figvn
& (th; Kij, thy). This will be done either by cell-centered evolution or by interface-centere
evolution, and we will use the acronyr@€EandICE to distinguish these two approaches.

For the moment, let us consider schemes using piecewise constant reconstructions
focus on the approximation of the characteristic flow.

NOTATION 3.1. In the following we will use notation of the form

) = a(Xi+12, Yj, tn) (53)

for a, b, andgp. Whenever no confusion is possiblee will drop the superscript n.

3.2. Cell-Centered Evolution: TheMoT-CCE

Inaseries of papers[7—11], Fey and collaborators have used a cell-centered approxim:
of the characteristic flow. When combined with piecewise constant reconstructions, Fe
scheme is defined as follows:

In each cellK;;, consider the local characteristic flow defined by

gL x Y=

(54)
85 (T; X, 1) =§(x.,y,,tn)_a”,

so that each local approxma’uéjﬁ of the flow is defined using the constant velocity field
a” = a(Xi, Yj, t). Then set

Kii’jj’ = Ki/jr ﬂg{‘,j,(tn; Kij, th+1) (55)

and

K
x)dx = o 56
(p” |K|]|/” ‘PR( ) |K|J| Girjr- ( )

i"j

In one spatial dimension this leads to the algorithm

N+l

o=+ +‘Zii+1
= A@-1) +¢i-1+ A= AaDg — A@4+1) i1, (57)
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wherei := k/h and the subscripts denote the positive and negative parts of a quantity
Here we have assumed the CFL (Courant—Friedrichs—Lewy) condition

rmaxall| <1, (58)

and so the update in ceK; is only affected by the values of the old solutions in the
neighboring cells.

Fey calls his schemdoT (Method of Transport), and therefore we will use the acronyn
MoT-CCE-P0for his scheme with piecewise constant reconstructions.

Let us discuss the consistency of MeT-CCE-PQwith the differential equation (41). #
is constant, then (56) coincides with the first-order upwind scheme. For variable coefficie
the situation is more complex. Let us consider two examples.

ExAMPLE 3.1. First let us consider the case
ax,t) = —x
corresponding to a compressive wag¥e- a < 0). For constant initial data,
po(X) =1,
the exact solution remains constant in space but grows exponentially in time,
o(X, 1) = e'.
The approximate solution produced by eT-CCE-PQis

_n_{(1+k)“, i #£0
7 2w+ -1 i=o.

As k tends to zero with. fixed, this solution converges to

e, X#0
aproX(x, t) 1=
XD {2et—1, X = 0.

Thus (56) is inconsistent with the differential equation (41) at the “sonic” poiat
0, where the transport velocity changes sign. The cell-centered evolution leads to a
inconsistent approximation &f - a, which takes the value 2 instead of 1. This situation is
illustrated in Fig. 3.

ExampLE 3.2. As a complementary example, let us consider the case of a rarefact
wave,V -a > 0:

ax,t) =x, ¢p(x) =1
In this case the exact solution is
px,t)y=et

and the approximate solution is
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L

%
MoT-CCE-P0, compression

N

Y
MoT-CCE-P0, rarefaction

FIG. 3. Approximate characteristic flow for thdoT-CCE-PQin one spatial dimension. Compression field
(top) and rarefaction field (bottom). Each cKll is transported forwards in time using the constant velogity
Note the resulting gaps for the rarefaction and the overlaps for the compression.

As k tends to zero with. fixed, this solution converges to

et, x#0

aPPIX(x, 1) 1=
PP, 1) {1’ «—0

so we have an analogous inconsistency.

A similar difficulty was already described by Steger and Warming in 1981 [40]: th
numerical flux produced by their splitting is not continuously differentiable at sonic poin
for the equations of gasdynamics (i.e., points where the magnitude of the fluid veloc
|u] equals the sound velocity, so one eigenvalue af + ¢ vanishes). This results in so-
called glitches at the sonic points. Subsequently, Van Leer [43] developed a splitting w
continuously differentiable fluxes (compare also the discussion in Chapter 20.2.3 of Hirs
textbook [15]).

In her dissertation, Morel [26] also observed glitches at sonic points for two-dimensiol
shallow-water computations carried out with MeT-CCE-PQand she generalized the Van
Leer flux-vector-splitting to two dimensions to remove these numerical artifacts. Howev
this slows down the algorithm considerably, and Morel herself remarks that her method d
not seem to be generalizable to second-order accuracy. Compare our numerical experin
in Section 5.5 below.

Let us also remark that in Examples 3.1 and 3.2 aboveMb&CCE-POdiverges in
the L>°-norm but converges ih'. Moreover, this inconsistency does not occur when on
approximates the velocity field by piecewise linear functions; i.e., Fe\NoT-CCE-RL
may very well be second-order consistent, even at sonic points.

For similar difficulties at sonic points in the context of upwind finite-difference scheme
we refer the reader to [38].
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3.3. Interface-Centered Evolution: TheMoT-ICE

For the rest of this section, we will derive an alternative to the cell-centered evoluti
discussed above and prove its consistency. Since the new scheme will approximate
characteristic flow by an extrapolation of the transport velocities which is centered at
interfacesbetween the cells, we will call MoT-ICEfor interface-centered evolution.

As we have seen at the beginning of this section, it is crucial to approximate the chal
teristic flowé (-; x, tn) along the velocity field from timet, to timet,, 1, or equivalently,
the backwards characteristic fldw-; x, th1) from timet, 1 to timet,. Let L)j‘fl/z be the
curve in the X, y)-plane that will be mapped to the horizontal grid liRex {y; 1,2} by the
forward flow. Using the notatiof = (£, ) for the characteristics we may write

LItz i= {X I n(tasss X, ta) = Yjra2} = & (ts R x {Yj1a/2}, taya). (59)
Similarly, IetLiy;Lnl/2 be the curve which will be mapped to the vertical grid ljre 12} x R,
LY0 2 = {X | &ty Xo ) = Xipaj2} = & (tn: {Xiy1/2} X Rotaga). (60)

For small values ok = At and smooth velocity fielda, the curvel "}, , is almost hori-
zontal, and the curvlt:iyfl/2 is almost vertical. See the upper two plots of Fig. 4.

rz.n Fy,n
ij+1 i+37

FIG. 4. Backward characteristic transport of the grid lines from ttjetot, (a, b > 0). Upper row: original
grid att,., (dashed lines) and transformed horizontal and vertical lingqfil lines). Lower row: approximation
of the transformed grid 4 by horizontal and vertical line segments. The dots are the midpoifits,, M, »;.
(and an approximation of these).
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We rewrite the two curves as the union of small segments of approximate length

L>j<fl/2 = U Lix,’jn+1/2 (61)
iez
with
Liquil/z ={xe L)j(fl/Z | x € [Xi—12, Xit12) } (62)
and
Liyirnl/z = U Liy3rn(1/2)j (63)
jez
with
Liy;'ll/zn ={xe Liyi-nl/z |y € [Yi-v2: Yi+12] }- (64)

We will approximate the curved segmert?; , by a horizontal line segment

L0 2 = [Xi—y2 Xivr2) X {Sj+12}- (65)

and approximate the segmdqﬁ?l/z)j by a vertical line segment

L 2.5 = {Kirami} X [Yi-2 Yitie)- (66)

This is illustrated in the lower two plots of Fig. 4.

Letus summarize this: firstwe have traced the gridlines backwards along the character
flow, leading to almost horizontal curvel-;ﬁ‘ﬂ/2 and almost vertical curvels,+l/2 Then
we have approximated these curves by unions of horizontal line segments and unior
vertical line segments respectively.

Note that so far, the definition of the line segments is incomplete, since we have not
defined the value 1,2, andVij 12

Let

%N XN
Mij 12 = (Xiv Yii +1/2) € Lijy12 (67)
y.n _ * . y.n

Mt = (Xi+(1/2)j» YJ) € Lilwaj- (68)

be the mldpomts of the segmertﬁ +1/2 and L,Jr(l/z)J respectively. Then the midpoints
(%i, %j+1/2) of L,J+1/2 and(Xi+/2)j, ¥i) of L|+(1/2)] should satisfy

%iva/2) = Xz + OO (69)
$it12 = Vi 110+ OPHD), (70)
respectively.

We will see later on that fop = 1 andp = 2, this is sufficient forpth-order accuracy
(see Theorems 3.1 and 3.2 below).
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Letus approximat&, , , ;: From the definition of the characteristic flow (43), any point
X satisfies

the1 thi1
g(tm;x,tn)—x:/af§<r;x,tn)dr= /a(g(r;x,tn),wdr. (71)
th th

We now choose = LniV;rll/z)j and take thex-component of (71). From the definition (60)
of the segment 7, ,; we obtain

tn+1

Y
Xit1/2 = X' a2) = / a(é(zs Mz ta). 7) dr. (72)
tn

Now we will approximate the time integral by a quadrature rule,

tht

k /a(§(f; M /2 ) 7) AT = &l g + OKP). (73)

tn

SorS)1-“+(l/2)j is an approximation of the mean value of theomponena of the velocity field
a along the characteristicissuing from the midpointn’}7; ,,; of the segment}, . at
timet, and arriving at the lingx 11,2} x R at timet, 1.

Using the explicit Euler timestep to approximate the integral we obtain

thia

1
K /a(f(f M a2 ), 7) AT = (M 5, ) + OK) =&l 40 + OK), (74)

tn

where we have used (72) and the fact that for uniformly bounded velocity &elds
a2 = (Kai Vi) = (X2, i) + OK. (75)
Next let us approximate (73) to second order. From (72) and (74) we have
X' /2 = Xiv12 — K&l 1)z + O@K?). (76)

Together with the mid point rule in time and a Taylor expansioa@itn,1/2; (X, ¥j). tn)
aroundx = Xi11/2 — Ka', (1 5); this gives

thia

a( (v m|+(1/2)1’t ), 7)dt

el

i
= @ (tn+1/2§ Ln?/f(l/z)j ) tn), tn+1/2) + OK?).
= a(& (tnrr/2t (a2 = Kal 1072 Y1) ). tosaj2) + O(P). (77)
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Now we approximate the characteristic transggoat timet,, 1/»:

€ (tnra2is (Xi+1/2 — K&l (2)j+ ¥i)s th)
k
= (v = ka0 i) + 5 (@ asm Bliasa;) + O

k k
= <Xi+1/2 — Eain+(1/2)j* yj + EbF+(1/2)j) + O(kz). (78)

We use (78) in (77) and Taylor expansions as above to obtain

thi1

1
o [ aE(m Mz ). 1) de

k
tn
k n k n 2
=a( X2 = S8 Yi Tt Ebi+(1/2)jvtn+1/2 + 0K

n+1/2

= {a — Eaay + —bay} + O(K?). (79)
2 2 ivao]

Here we have applied Notation 3.1 to the term in square brackets. Thewalyg which
defines the midpointn;?, , = (X, ¥;; ,1/,) Of the horizontal line segment;", , is ap-
proximated analogously. These calculations lead us to the folowing definition:

DEFINITION 3.2, The midpointsiy;?; , = (xi, 9ij+1/2)Aandﬁ1iy’+”(l/2)j = Ri+a/2j> Yj)
of the horizontal and vertical line segmemﬁﬂl/2 and Li”f(l/z) j respectively are given
by

Rit/2)j = X172 — K& (12, (80)

Vij+1/2 '= Yjt1/2 — kE)inj +1/2- (81)

We define the auxiliary transport velocitigs ;5 ; andB{]— +1/2 bY

& a2 = Arai (82)
b} 172 1= b} 4172 (83)
for theMoT-ICE-POand by
k n+1/2
ain+(l/2)j = |:a. — éaax + zbay:| ] (84)
) K K n+1/2
b} 412 = {b — 5abc— bey} i1 (85)

for theMoT-ICE-P1

Remark. The formulae given in Definition 3.2 can be carried over to any number ¢
space dimensions and grids of arbitrary orientation: lLdte a curve segment which is
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associated to a cell interfaces RY, and letx be the midpoint andthe normal ofl . Then
we may approximate the midpoint of L by

1 K

K / a¢(;mty), 1) dr = a(x —k@-mn+ Za) (X, tap22) + OK®)  (86)

th
and introduce the auxiliary transport velocéyy

a.= {a —k(@-n(n-Vvya+ g(;d- V)a] (X, tht1/2). (87)

The midpointh of the approximate line segmeﬁtis then given by

(=2

=X —k(

o

-mn- (88)

In particular, in the three-dimensional case MeT-ICE-P1lhas the same simplicity as in
the two-dimensional case. Moreover, formulae (87) and (88) may be applied to curvilin
Cartesian grids, as well.

To illustrate the idea of th&#oT-ICE even more clearly, we display the approximation
of the characteristic flow in Fig. 5. We show the same situation as we have done in Fif
for the MoT-ICE-PQ For theMoT-CCE cells are transporteforwardsin time using an
approximation of the characteristic flow at tbell centers For theMoT-ICE, interfaces
between the cells are trackbdckwardsn time using auxiliary transport velocities which
are defined at thegeterfaces

From now on, we let = k/h and suppose that the CFL condition

rmax{ (& gz (B2l } < 1 (89)
is satisfied.
t
k
%32 N2 Nz %aan x
MoT-ICE, compression
t
k

%312 %172 *+1/2 %+3/2 x
MoT-ICE, rarefaction

FIG.5. Approximate characteristic flow for tHdoT-ICEin one spatial dimension. Compression field (top)
and rarefaction field (bottom) (same situation as in Fig. 3). Each cell intekfageis tracked backwards in time
using the auxiliary transport velocigf, , ,.
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Let us look once more at Definition 3.1 of the characteristic schemes: to finish t
discretization of (41), it remains to define the waygs n (50)-(51). We do this as
follows: write

F. /"wRo<y>dxdy (90)
) |KIJ|

KIJ

where
Ky =[x X R) > L0 ViR (91)
is that approximation of
Kij N&(tn; Kirjr, thya)

which is constructed by replacing the curved line segmlaf‘]@l/2 and Lly;(l/z)] defined
in (61)—(64) by the straight line s:egmemﬁﬂ/2 and L,jc(l/z)J defined in (65) and (66).
Using (80) and (81) we obtain

Xi—1/2 fori’=i -1
XL = %12 =K@ qp;)_ fori’=i (92)
Xi+12 = K(@ qy9;), fori’=i+1

y Xt foried{i —1i
Xilj,R: { o . { } (93)
Xit12 fori’=i+1
Yi-1/2 forj’=j—-1
yijj/,L =qYi-12— k(Binj 1) forji = (94)
Yi+12 — k(f)ir} 112), forj’=j+1
i1 G :
i Y forj e{j—1j}
%R={”L oy (95)
Yi+12 forj'=j+1

(compare Fig. 6 for the case b> 0). Note that for piecewise-constant reconstruction:
(90) simply becomes

—'j’ 1

@ij W<Xiii,,R IJ L)(yu R™ yiJli,~|-)(zl' (°6)

and for piecewise-linear reconstructiqu&(x, y) (see (128)),

L 1 . X-i-, +X-i-/ yJ/ _ yj/
—) . ij ij,L ij,R ij,L ij,R
%ij = K | (%ij.r — Xij, L)(yu R y” L) ( > ; > ) (97)

Remark. Formula (97) should be compared to tlieT-CCE-P1lin [9]: given a piece-
wise-linear reconstruction of the velocity fields, thi®T-CCE-Plextrapolates the char-
acteristic flow over each cell forwards in time. The cell is thus transformed into a gene
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Ka,in;
RN R T,
' o1iel
! (Pu (Pu ! I bij+1/2
| - Wy
' 1} l
L9, @,

FIG. 6. Auxiliary transport velocities and approximate characteristic decomposition of a two-dimensior
cell Kj; via interface-centered evolution. This figure is the result of superimposing the lower two plots of Fig
and cutting out celK; .

guadrilateral, which has to be projected back onto the grid. Then a piecewise-linear rec
struction of the solution is integrated over each resulting subcell. The necessary quadra
are far more complex than (97). This seems to be the main reason for the gain of efficie
of the MoT-ICE-P1(see Section 5.6). We expect an even bigger gain in efficiency for
three-dimensional case.

3.3.1. Consistency of the MoT-ICE-PO

In this section, we state and prove first-order consistency d¥itiieICEfor piecewise-
constant spatial reconstructions @f For technical reasons, we will need the following
definition:

DerINITION 3.3. A function f defined at the cell centers is calldibcretely Lipschitz
continuoudf for neighboring cellsK;; andKj/j/,

fij — fijy = Oh). (98)

Analogously, a functiorg which is defined at the interfaces between the cells is calle
discretely Lipschitz continuous if its values at neighboring interfaces differ by no mo
thanO(h).

THEOREM3.1. Supposethat = k/hisfixed andthatthe CFL conditigB9) is satisfied.
Suppose thei , 1/2); andbij 11,2 are given discretely Lipschitz continuous grid functions
and let the auxiliary transport velocitigsandb be given by

di+2j = a(Xity2, Yj. th) + h&i 112 (99)
bij 112 = b(Xi, Vj+1/2, tn) + bij41/2. (100)

Let the MoT-ICE-PO fox41) be defined by47), (48), where the Waveéiij/j' are defined
by (96) together with(92)—(95).

Then for any given smooth velocity fietdR? x R, — R?, the MoT-ICE-PO0is consistent
of order one with the differential equatiqal).
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Note that we have replaced the definition (82), (83) of the auxiliary transport velo
ities &', 1,,; and f)i”j +1/2 by the slightly more general version (99), (100). The highe:
order termsd; y(1/2; andbyj 11/ allow for some flexibility in the numerical approxima-
tion of the auxiliary transport velocites. For example, one might think of approxima
iNg &, 1/2; = a(Xi+1/2. ¥j. t) by 3(@]} +a",;;) or by ai”:(ll//zz)j. If the velocity fielda is
continuously differentiable, then the resulting teréng1,2); will be discretely Lipschitz
continous.

As is evident from Examples 3.1 and 3.2, the difficulty of the proof lies in controlling
the truncation error at the sonic points where the transport veloeitieslb change their
sign.

Proof of Theorem 3.1.Let ¢ be a smooth solution of (41) with initial da¢g, given at
timet = t,, and let

1
o = / ¢p(X) dx. (101)
IKij |K
ij

Let &ﬂ*l be the approximate solution computed with MeT-ICE-PQ i.e., (48), (96), and
(99), (100). We would like to show that

1
i K| / 9(X, thr1) dx = O(h?). (102)
ij &,
From (41),
o/
IKij |
Kij
1 1 thia Yi+1/2
T K| /‘/’D(X) X = / (ap (Xi+1/2, ¥. 1) — ap(Xi-1/2, y, 1)) dy dit
! Kij ! th Yj-1/2
1 the1 Xit1/2
~ K] (be (X, Yj+1/2, ) — be(X, yj-1/2, 1)) dx dt
th Xi-172

=¢l = (@M w2) — @Y 1)2);) = H(B)] 112 — (BRI _1 ) + OK?). (103)
We rewrite the characteristic formulation (52) of the scheme in conservative form:
ot =0 = A(firwoi — ficwai) — MG 112 — Gij-12)- (104)

Here the numerical fluXi . 1/2); acrossl (12 is given by

. +1 +1 +1j+1 +1
Mivae)j = (‘E:j ] —ﬁzi”+1j) + 5(‘5;”1] _(Zi”+lj+l+‘;i‘j . _‘Ei”+1j)
1 -1 —j-1, -1 —ij
+ > (@ — Qi+ @ — Giha1)s (105)

2
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K. .
i+1j

FIG. 7. Contribution to the numerical flux;,,,; across interfacé ., for the MoT-ICEin two spatial
dimensions. As before, the underlying grid is represented by dashed lines.

and the numerical flug;j;1/> acrosslj+1/2 is given analogously by

M = @ = @) + 5 G - Al + A7 - )
@ =G+ A - ) (106)
(see Fig. 7).
To verify (102), it is sufficient to show that
fivaai — fi—a2i = @)L — @12 + o(h?) (107)
and
Gij+1/2— Gij-12 = (b)) 11)o — (b)) _1 o + O(h?) (108)

Let us first verify (107). From (104),

14l | i+l =411 4l | i —ij-1
Mivapi = (@] T @ T ) = (@i + Giva) +oika)
1 a5 o i1l | —ij+1
+§(<Pij+1 — Pit1j+1 ~ Gij +9ik1))

1 oiv1j-1 —j-1 =i+l , =i
—5(%1 — @it1) — Gij-1 T Gisaj1)

= M@+w2i) @i + (Gira2i) @]
Y - _ . - _
-5 [(&iva2ie), (bijr12) @jat+(@rwzia)_ (Biji2) @i
+ (&irami), (B 112) i + (Girami)_(Birajr12)  @ien ]
A2 - _ . - _
+5 [(Eiva2i), (bij-12) @i + (Gir@2i) _(bivsj-1/2)_@ia
+ (& rami-1), (b 12) @1+ Erami-1)_(Biysi-v2),@ii1j1]
)\'2

. C N S
=1 ilwzi — 5 (e = ftwai): (109)

This decomposition is shown schematically in Fig. 8.
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FIG. 8. Decomposition of the numerical flux into central, northern, and southern parts.

The central part of the flux satisfies
c A h A h )
filaej = [+ (90— 50ox ) —a— @+ 50 +0(h?)
2 277/ liva]
A h 2
= (3¢ — 5 lalex + O(h)
i+(1/2)]
. 1 2
= (ap)i+a/2j +h( ap — §|a|§0x + O(h?).
i+(1/2)]
Let
a = signa.

The contribution from the northern corner satisfies

. [~ h h h
fili(l/Z)j = [a+ (b - be - Eby>_ <<ﬂ - E%)
. (= h h h
+ a <b+ by — by> ((,0 + </7x)]
2 27/ 2 i+(1/2)j+1
. [~ h h h
+ I:aJr (b - be + Eby)+ (fﬂ - wa)

. (e h_ o h h
+a (b +oby+ by> ((p + gox)] +0(h?
2 2 + 2 i+(1/2)]

= N+ N+ oM.

We claim that

~ h h h
le = |a|b— zaby— Zby @ — =Py + O(h?)
2 2 - 2 i+(1/2)j+1

(110)

(111)

(112)
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and
N ~(+ h h h )
2 2 2 i+1/2)]
First we prove (112). Note that the mapping> b_ is Lipschitz continuous, and so
- h h -
b— be - Eby =b_+O(h). (114)

Using this and the identities

A a+od a—cad
= _ = 11
a, > A 5 (115)
we obtain
~J1+a /- h h 1—a/. h h
le= {a|: 5 (b_ibx_iby>_+ 2 <b+ be_iby)_:|(p
h 2
— —ab_(apy) + O(h?)
2 i+(1/2)j+1
~ h h h .
= { b— —ab, — by) o — éb_(agax)] + 0O(h?)
2 27/ 2 i+(1/2)+1
- {a (6 - habX - Eby) ((p — Eagox)} + O(h?), (116)
2 2 - 2 i+(1/2)j+1
i.e., (112). We verify (113) analogously, and in the same way, we obtain
fS= {3+ 24+ 0M? (117)
with
~ h h h
o= [a (b — —aby — —by) ((/) — —acpx>} +0O(h? (118)
2 2 - 2 i+(1/2)]
and

< h h h
£S5 = {é(b — —ab+ by> (w - oupx)] + O(h?). (119)
2 2 + 2 i+(1/2)j-1

Subtractingf S from N, we obtain

d [.(c h h h
a2 = i) = ha_y [a<b_ Eabx - 5by> ((p - an)] 1/2j+1/2
- i+ I+

Bl ~ h h h
+h— {é(b— abx+by> <<p— otgox)] +O(h?)
ay 2 27/, 2 i+(1/2)j-1/2

d
= ha_y [@b—@)ita2j+12+ @D+ @)isa2)j-1/2] + Oh?)

0
= ha—y(abso)i+<1/z> i +O(h?). (120)
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Combining (109), (110), and (120), we obtain
firazi = @p+h0f 2, +Oh). (121)

with
n s 1 A "
lira/2j = |a® — §|a|€0x - E(ab(/’)y : (122)
i+(1/2)]

To verify (107) it remains to check that
h(ra2; = las;) = OH?). (123)

This is true because we are assuming tha, andb are smooth and thdt is discretely
Lipschitz continuous, and gois discretely Lipschitz continuous. Equality (108) is proved
analogously. m

To get further insight into the failure of consistency of leT-CCE we carry out the
above analysis for thloT-CCEin one dimension. An elementary calculation leads to

fS5% = (@p + hr*H, , + Oh?) (124)

with

1
"7 = [—§<|a|go>x] o (125)

The crucial difference between (122) and (125) is that the remainder now contkiriga
tive of |a|. At sonic pointsa changes its sign, and $a|y is discontinuousTherefore, the
remainder <57, fails to be discretely Lipschitz continuous at sonic points, which leads t
the inconsistency shown in Examples 3.1 and 3.2.

3.3.2. Consistency of the MoT-ICE-P1

Here we state and prove second-order consistency in space and timéMafTHEE for
piecewise-linear spatial reconstructionspof

THEOREM3.2. Let a R? x R, — R? be a given smooth velocity field and &tR? x
R, — R be a smooth solution g#1).

Let & and b be given discretely Lipschitz-continuous grid functions and define tt
auxiliary transport velocities. andb by

k k n+1/2
Birzj = {a — 3%+ 5bay + kzé] (126)
i+(1/2)]
5 k k _n+i2
ij+1/2

Let the MoT-ICE-P1 fox41) be defined by47), (48), where the Waveéiij/j’ are defined
by (97) together with(92)—(95) and the piecewise-linear reconstructigg of ¢ over K
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is given by
PROGY) 1= @ij + (X=X @i + (Y = YD @iy (128)
Here we assume that the discrete derivati@ggsij and (¢y);; may be written in the form

@)ij = (@0ij + h(@yij (129)
(@y)ij = (py)ij + h(@y)ij, (130)

for some discretely Lipschitz-continuous grid functighsand ¢y. Let2 = k/h be fixed
and suppose that the CFL conditio89) holds.
Then the MoT-ICE-P1 is consistent of order 2 with the differential equatién

As in the first-order case, the Lipschitz-continuous higher order terms in (126), (12
permit some flexibility in the numerical implementation of the auxiliary transpol
velocities, for example the approximation of the derivatiggsa,, a;, etc. (see the proof
of Theorem 4.2 for systems of conservation laws.) Similarly, note that the piecewise-lin
numerical reconstructions of a smooth functiobased on cell averageg do not evaluate
the derivatives of the function exactly. The auxiliary valggsindy, take these deviations
into account.

In our test calculations in Section 5 we approximate the derivatiggs; and (py)ij
by a central version of the WENO (Weighted Essentially Non-Oscillatory) reconstructi
[16, 23],

(Px)ij = %WENO(@,— — @i-1, Gi+1j — ij) (131)
(@y)ij = %WENO@J‘ = Qij—1, Gij+1 — @ij) (132)

with
WENO(dy, d2) = (w101 + wpd) /(w1 + w2) (133)

and
o= (e r )2 (13)

As in [16], we uses := 1078, Using similar techniques as in [16], one can verify that the
central WENO reconstruction satisfies (129), (130) at all points, including extrema of 1
solution.

The proof of Theorem 3.2 follows along the lines of that of Theorem 3.1 but require:
much more careful analysis of truncation errors owing to the piecewise-linear reconstruct
Let us stress once more that we do obtain second-order consistency at all points, inclu
those where the transport velocities change sign.

Proof of Theorem 3.2.Let ¢ be a smooth solution of (41). We want to show that

ij
Kij
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From (41),

1 n+1/2 n+1/2
|Kij | /90(2(, thep) dx = (Z:] - l[(asﬂ)i+(1/2),- - (a(ﬂ)i,(l/z)j]
Kij

— 1[G — b HE] + 00). (136)

Using a Taylor series with a remaindérwe obtain

k N n
(aﬁo)?I(:ll//ZZ)j = [afﬂ + E(a@t + sz]
i+(1/2)]
k k K 2 1"

=|la+ z& 1_§(ax+by) w—é(a¢x+ab¢y)+kwa

2 i+(1/2)]

(137)

The last equality implicitly defines a discretely Lipschitz continuous funafiprCombin-
ing this with (126), we obtain

ok N n
@)/ = (a — @by - kza) ¢ — 5@ +abpy) + kzl/’a]

i i+(1/2)]
n

[ k k ~
= |ap — §a2<px - é(ab(p)y —k%a + kzwa}

i+(1/2)]
[ k., K .« "
L i+(1/2)]
Analogously,
o K+ K .- "
(o)l = {b <s0 - bsoy) — ~(&bg)x + kzwb} : (139)
2 2 ij+1/2
Therefore,
3 [, K, kK . 1"
@)L — @ = [a(w - Eagox> - §<ab<p)y] 0 (140)
ij
and

3 [- K kK .- n
@ s - GoE =02 [6(0 - gbey) — S@bon| +omd. 4
1]

As before, we rewrite the update in conservative form (104) and define the numeri
fluxes by (104), (105). Plugging (104) and (136)—(141) into (135), we see that it is sufficie
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to show
a1 k. L ,
firwo — fi—waj = h(‘)—y al e — 58 ) - E(abgo)y ! + O(h7) (142)
and
0./ ke K . " ,
Gij+12 — Gij-12 = hzTy b e — §b¢>y - é(abfp)x ; + O(h%). (143)

First we treat (142). Similarly as in (109), we rewrite the flux as

A
fi+(l/2)i = fii(l/Z)j - E(fi’j—(lﬂ)j - fii(l/Z)j) (144)
with
C . A ij K
fi+(1/2)j = (ai+(1/2)i)+</’R Xi+1/2 — §a+, Yi

A i+1 K.
+ (&) e (X2 — say; ). (145)
2

) . K K.
N (A +1 R
Nz = @Gramin), (i) _er (Xi+1/2 — 58+ itz — Eb)

) A " k. k.
+ (Bswoirn)_ (Bisvjraz)_or T Xiyy2 — S8, sz — b
2 2

R - i k. K
+ (ai+(l/2)j)+(bij+l/2)+(p||5el (Xi+1/2 - §a+, Yj+1/2 — §b+)
R - i+1 K, K
+ (ai+(1/2>i)_(bi+1,j+1/2)+€0R Xi+12 = 58 Yj+y2 — §b+ . (146)
and
s ._ (3 ; i Ky Ks
filap) = (ai+(1/2)j)_,_(bij—1/2)_§0R Xi41/2 = 58+ Y12 = Eb’
A . i1, ] K ko
+ (ai+(1/2)j ), (bi+1,j—1/2),<ﬂR Xit1/2 — Ea" Yi-1/2 — Qb—
k

R N S k R N
+ (&va2i), (0j-172) ,oR 1(Xi+1/2 — 58+ Yi-12 — §b+>

A - il k. Kk~
+ (ai+(1/2)j—1),(bi+1,j—1/2) <,0'R+l" ! Xit12— 8-, Yj—12— by ). (147)
+ 2 2

Heregoing is defined by (128), and we have simplified the notation as follows: wheidgver
(respectivelyb..) appears twice on the same line, it is evaluated at the same point, and
subscript is dropped at the second occurence.
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First we consider the central contributions to the ﬂqu(w. Fori” e {i,i + 1}, let

1 -
1//.+(1/2), X) = [(ﬂR (X412 — h%, yj) — (¢ — &gtz ]- (148)

. ~ e
fii(l/Z)i = {a+[<§0 - <Px> + h2y (ZaJr)]
va| (v o) v (o)
i+(1/2)]
[ (0= 380)], oy, a0 () w1 (2]
i+(1/2)] 2 i+(1/2)j
: fC

(149)

Now

>)

I\JI?T N X
N

I\)

i Ty

From this, we obtain
£t £t h Ka on? 150
ir12j — w2 = ¢ =580 )| + Oh%). (150)
ij

A straightforward computation using (128), (129), (130), the relation

_ h?
@i = ij + 57001 + 00, (151)

and the fact that products and sums of discretely Lipschitz-continuous functions are th
selves discretely Lipschitz continuous shows th&t is discretely Lipschitz continuous,
ie.,

(1502 — f%2;) = 0. (152)
Combining (150) and (152) we obtain

a [, K.
fGwai — iCam =hoy [a<9” - Ea‘pxﬂ.. +Om). (153)
ij

Next let us consider the contribution to the flux from the upper corﬁﬁé&/z)j . LetKj/
be any cell which haéxi 11,2, ¥j+1/2) as a corner. Let

Sl ae% 9 = hl [oR” (%4172 = %, Yj422 = DY)
— (¢ — hXex - hy¢y)i+(1/2>j+1/z] (154)
We can now rewritef N as
N N1 K N2
fita2i = @ira2iryz fitayz; — §(¢x)i+(1/2)1'+l/2 fiv2)

k
- é(‘/’y)i+(l/2)j+l/2 fil\le/z)j +h? fi“i‘h/z)j (155)
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with
f|+(1/2)1 = (éi+(1/2>1+1)+( J+l/2) ( I+(1/2)J+1) (bi+1j+l/2)
+ (&ivami), (Bivae), + Girami)_(Biwive) (156)
202 = (i) Byia2)_ + Gramiv)” (b))
+(<’?\i+<1/2>j)i( ij+1/2) , + (& i)’ (bissjs12) - (157)
0 = (i), Bic12)? + (Biraia)_(Biisjae)’
+ (&+a2i), (b 1+1/2)i+( &ivazi)_(Birejr),., (158)
and

(A e i+l A An
fi'jjl/Z)j = (ai+<1/2)j+1)+(bii+1/2)7 §iIJrle;2,j+1/2(za+’ Eb_
A ~ +1 a Aa
+(ai+(1/2)i+1)_(bi+1,j+1/2) §|+(1/2)1+1/2 2 Eb
+ (éi+(l/2)i)+<bij+l/2)+ Ciljﬁ-J(l/2)j+l/2< a+, >
aivas2i)_ (Bitj; Y *a b 159
+(al+<1/2)1)_( I+J,1+1/2)+§i+(1/2)j+1/2 Eaf’i + |- ( )

An analogous representation holds fqi(l/z)j. Using the same arguments as in the
derivation of (152), one shows that

h?(f¥y2; — fiSiw2;) = O0°). (160)

The coefficientsf N2 and f N3 consist of smooth terms @¢?(1) and@(h) and of a remainder
which is a discretely Lipschitz-continuous function multipliedtsy Therefore,

k N2 s2
—3 [(@)i+@/2)j+1/2 w2 — @ditaai-12 i)

— (Pi-12.j+1/2 V31 2 + (@i—a/2j-1/2 T2 = OB (161)
and
3 s3
2 [(‘Py)i+(l/2>i+l/2 fi’i(l/Z)j — (@y)i+@/2j-1/2 fi+(1/2)j
— (pyi—ai+1/2 N2 + @i—a2i-12135 2] = O0%). (162)
Finally,

N1 S1 N1 S1
vir2i+12 it —vi+api-v2iTae; — G-w2it2 itae Hoi-a2i-12 202

2 .
= h? [axa ((A;b_+a_b_+a,b,+a_bye)| +0(nhd.
y ij

— 3
- [m } + 0. (163)
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Collecting (155)—(163) gives

A A kh
—E(fN — )itz + E(fN — 9i_12 = _7(ab§0)xy+ Oh3.  (164)

Together, (144), (153), and (164) yield (142). Equation (143) is proved analogomsly.

4. THE MOT-ICE FOR SYSTEMS OF CONSERVATION LAWS

In this section, we combine the results of Sections 2 and 3 and deriwédhdCE for
systems of conservation laws in two spatial dimensions.

Note that both in Eqgs; (126), (127) of Theorem 2.1 and in Eq. (38) of Theorem 3.2 t
velocity fielda = (a, b) is evaluated at the half-timestép.1/». In both situations this was
done to assure second-order accuracy in time. This simple observation makes it pos:
to apply the scalar version of tiMoT-ICE-Plin Theorem 3.2 to the advection equations
(38) in Theorem 2.1. To implement it, we need predicted values at the interfaces at
half-timestept,1/2. These are the valués* in Algorithms 4.1 and 4.2.

Below we give detailed algorithmic descriptions of the resulting first- and second-orc
algorithms. We state and prove consistency for smooth solutions and introduce upw
techniques which stabilize discontinuous solutions. Using Eq. (87), it is straightforward
generalize these algorithms to the three-dimensional case.

Letx = (x, y) andF = (F, G) and consider again the system of conservation laws (1
which now reads

U + 0xF(U) + 9y,G(U) = 0. (165)
We suppose that a wave model (6), (7) has already been chosen, andave-set, by ).
Step 0. First define the initial data via

—_ 1
00 = W/U(X’ y. 0) dx dy. (166)
ij
KIJ

Then make a conservative (i.e., small) guess of the admissible timestepr example

h-CFL

1= , (167)
maxji (Ja (Ui})] [br (U)
where CFL is the Courant number. Now suppose khat andL_J{‘j ,i, ] € Z, have already
been computed. We want to compkpeandui”j*l, i, €Z.
We begin with theMoT-ICE-PQ
ALGORITHEM 4.1. Step l:Forij e Zand|l=1,...,L compute the auxiliary trans-
port velocities on the interfaces via
&2 = a(Ukhae)) (168)

Bij+l/2 = bl (Ui*j+1/2)’ (169)
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whereU;, , ,,; andUj ., , are given by a one-dimensional Lax—Friedrichs step

1 An_
Ul = 5 (Ui + Uis) = 57 (F(Uigy) — F(U) (170)
* . 1 An-1
ij+1/2 -~ E(Uij + Uij+1) - T(G(Uij+1) - G(Uij ). (171)

Step 2: Compute the new timestep by

h-CFL
Kn := 5 ~ 172)
max;i (‘ai+(1/2>i bl a2l)
Where0 < CFL < 1is the Courant number.
Step 3: Compute the initial data and the update for each wavd] ..., L as follows
Fori, j e Zlet
zi" =S (Uf) (173)
and set
o =27 (174)

Use(96) with timestep k= ko, &i1a/2j = &i+a/2j. andbi a2 = b, , to compute

Zimt =3 gl (175)
i

Step 4: For i j € Z, compute the update of the conservative variables

L
Uptt=> zm (176)
=1

This completes the definition of tidoT-ICE-PQ
Let us now state the consistency of MeT-ICE-POfor smooth solutions. We omit the
proof, since it is analogous to that of Theorem 4.2 below.

THEOREM4.1 The MoT-ICE-PO as defined in Algorithnl is consistent of order one
with the conservation lawl65) for smooth solutions.

Remark. To guarantee first-order consistency, it would have been sufficient to define
N . 1
ditasz) = a| 5 Ui+ Vi)
| . 1
bij 12 =D E(Uij +Uij1) |.

However, this central differencing leads to oscillations when one computes discontinu
solutions. The Lax—Friedrichs predictor step (170), (171) stabilizes the solution. See Fic
We stress that there is some freedom in the algorithm at this stage. For example, one n
construct the predicted values on the cell interfaces by a Roe decomposition or other upy
technique.



320 SEBASTIAN NOELLE

-1 0 1 -1 0 1
MoT-ICE-P0O without LF-step MoT-ICE-P0 with LF-step

FIG. 9. Density plots for shallow-water Riemann problem (80 poindpT-ICE-PO without and with
LF-predictor-step.
For theMoT-ICE-P1we need the following modifications:

ALGORITHM4.2. Stepla:Forjj € Zandl=1,..., L compute preliminary transport
velocities on the interfaces via

ailf(l/z)j =a (Ui*+(1/2)j) 77
b:f(l/z)j =b (Ui*+(l/2)j) (178)
ailfil/Z = a (Ujj,a) (179)
b:i11/2 =b (Ui*j+l/2>' (180)

This timeU;", 4 ;. Ujj 1/, are given by the two-dimensional Lax—Friedrichs step

i*+(1/2)j =z (Uu + Uit — (F(UI+1]) - FUij))
)\n 1

(G(Ul+lj+l) + G(U|]+l) - G(Ul+lj 1) - G(UIJ 1)) (181)

U;kj+1/2 = (UI] + UIJ+1) (G(Ulj+l) G(Uij))

e
1<F<U.+1,+1>+F(U.+1,> F(Ui_1j11) — F(Ui_1)).  (182)

Step 1b: Forj j € Z compute numerical derivativeﬁ'sl_x)i”j and(U_y)i“j using the central
WENO reconstructioil3l), (132.

Step 1c: For j j € Z compute numerical derivatives of the transport velocities on th
interfaces

1,
1= An-1& 1)
2

1+ Ano1 ) TPEg— S _
@y =y 2Oy T + & (Ui T 1,
(183)

- 1—|—/\_1ai"* TPp— 1—)»_181!’* ;
(ay)|i+(1/2)j — wa(uij)(uy)ij 4 - T A2)

5 a (Ui 1)) (Uy)i 1

(184)
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1+ )\nflb:jil/z 1- ’\nflbgiil/z

B0} 112 = b'(Uip T)ij + 5 b (Uij +0) (Ui +1
(185)

_ 14 An_qbl* - 1— hnqb* -

O 112 = %b’(um(uy)u + #b’(uum(uy)m.
(186)

Here d(U), b'(U) are the gradients of 2 with respect tdJ.
Step 1d: Forj j € Z compute the auxiliary transport velocities:

I(nl

a . l,%
a!+(1/2)j = (ai+(1/2)j)( (ax)|+(1/2)1) +— (b|+(1/2)1)(ay)|+(1/2)1 (187)

Kn—1

Kn—1, | —
b:1+1/2 = (bu+1/2)< (bx)u+1/2) n2 (ailj+1/2> (bx)=j+1/2~ (188)

Step 2: Compute the new timestgoly (172).

Step 3: Compute the initial data and the update for each wavel| .. ., L as follows
Fori,j € Zlet
In. n Kn T TR UN L
Zi" =S (U}) + 5T (U], Uof), Uy)]) (189)
and set
gj =2, (190)
(@i =S (U}) ] (191)
(@y)ij =S (Uf}) Uy} (192)

Then usg128) and(97) with timestep k= ky, 8i+1/2j = a|+(1/2)], andb.+(1/2), = b,JJrl/2
to compute

Zi" =3 "ol (193)
i

Step 4: For i j € Z compute the update of the conservative variablegliz).

Remark. (i) In practice, we usually replaced the two-dimensional predictor—steps (18
(182) by the simpler one-dimensional steps (170), (171). This did not have any visible eff
on the computed solution.

(i) The numerical derivatives of the transport velocities on the interfaces defined
(183)—(186) are upwind-weighted averages of the derivatives to the left and right. With
this careful upwinding, the numerical solution may develop instabilities at discontinuiti
similar to those in Fig. 9.

(i) In most of our experiments, the scheme was stable for CFl humbers up to uni
There was one exception, namely a radially symmetric implosion for the shallow-wa
equations. At the moment where the radially symmetric shock focuses at the origin and
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water height develops a sharp peak, one has to reduce the CFL number to 0.5 to mait
stability.

In other cases it seems to be possible to extend the scheme to CFL humbers greatel
unity by propagating waves across several cells as in [12, 19].

We end this section by proving the consistency ofM@l-ICE-P1

THEOREM4.2. The Mot-ICE-P1 as defined in Algorithé2 is consistent of order two
with the conservation lawl65) for smooth solutions.

Proof. Letus briefly sketch the ingredients of the proof. In Theorem 2.1, we have deco
posed the system of conservation laws into the advection equations (38) for the compon
Z, with initial dataz, (t,) given by (39). In (189) of Algorithm 4.2, the initial data far(t,)
are approximated to second-order accuracy. The numerical approximation (190)—(19z3
Z|(thy1) implements the scalar version of tMoT-ICE-P1defined in Theorem 3.2. The
hypothesis (126), (127) of that theorem can be verified from (177)—(188) by direct com|
tation. It is here that the flexibility which is allowed by the discretely Lipschitz-continuou
higher order termsi andb is really needed. We have already remarked that our centr
WENO reconstruction satisfies (129), (130). Thus we can apply Theorem 3.2 and concl
thatZ, (t,,1) is approximated to second-order accuracy. This concludes the pmof.

5. NUMERICAL EXPERIMENTS

In this section we present numerical experiments which confirm the accuracy and stab
of the newMoT-ICE for smooth and discontinuous solutions. In Section 5.1-5.3 we tre
one- and two-dimensional scalar problems with variable coefficients. In Sections 5.4 and
we compute solutions to the shallow-water equations. We include a preliminary compari;
of cpu times in Section 5.6.

5.1. Scalar Advection with Periodic Coefficients

To illustrate the failure of consistency of tioT-CCE-PO(cell-centered evolution)
and the consistency of the neMoT-ICE (interface-centered evolution), we consider the
one-dimensional scalar advection equation

dp + ox(pa) =0
over the interval £1, 1] with
a(x,t) = —sin(wx)
and
po(x) = 1.

Note that atx = 0, ¢(0, t) statistics the ordinary differential equation

dp(0,1) =m0, 1),
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and so

9(0,1) = e™.
Similarly,

p(Lty=e"

and these are the maximum and minimum of the exact solution. We compute the solu
attimeT =log(2)/x; so

05<¢x,T)=<2

We choose a CFL number of 4 1) /7, roughly 0.88. In Table I, we list the experimental
orders of convergence (EOCs) with respect to both.thandL > norms.

In the L norm, the EOC of théMloT-CCE-POstarts at 0.77 and increases toward 1
However, the methodivergesin L, as should have been expected from Examples 3.
and 3.2. In contrast to that, thdoT-ICE converges uniformly (i.e., i.! and L) to
the expected orders. Comparing thé errors of theMoT-CCE-P0Oand theMoT-ICE-PO
(piecewise-constant reconstructions), one sees thad¥itflelCE converges with a better
rate (especially on the coarser grids) and produces roughly half the errorMdbiR€ CE
The convergence rates of thlT-ICE-P1(piecewise-linear reconstructions) are even bette
than 2 on the finer grids, both for the unlimited and the limited version (we omit the taf
for the unlimited scheme). The error of the scheme using the WENO limiter is only sligh
larger than that of the unlimited scheme and it is of course orders of magnitude smaller t
that of the first-ordeMoT-ICE-PQ

TABLE |
EOCs for One-Dimensional Advection with Periodic Coefficients

ix L, EOC Lo EOC
MoT-CCE-PO
40 5.456309e-02 — 3.439066e-01 —
80 3.210264e-02 0.77 4.215299¢e-01 —-0.29
160 1.731594e-02 0.89 4.617376e-01 -0.13
320 8.996724e-03 0.94 4.813319e-01 —0.06
640 4.587514e-03 0.97 4.908176e-01 —-0.03
MoT-ICE-PO
40 3.075886e-02 — 8.834546e-02 —
80 1.599486e-02 0.94 4.741382e-02 0.90
160 8.114853e-03 0.98 2.471667e-02 0.94
320 4.094363e-03 0.99 1.263470e-02 0.97
640 2.055908e-03 0.99 6.379015e-03 0.99
MoT-ICE-P1 with WENO limiter
40 2.193228e-03 — 5.123679e-03 —
80 5.330401e-04 2.04 1.532804e-03 1.74
160 1.281400e-04 2.06 3.878244e-04 1.98
320 2.993688e-05 2.10 7.604266e-05 2.35

640 5.934229¢e-06 2.33 1.523297e-05 2.32
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5.2. Rotating Smooth Hump

Our next test problem is the two-dimensional scalar equation (41) with

ax,y,t):
b(x, y,t) :

-y
X

in the domain [-1, 1]. Note that for this problem, thi@oT-CCE-POand theMoT-ICE-PO
will produce identical results, sin@g = by = 0, and so
Qa2 =a+apj =a; =-y; forall ]

and

bij+1/2 = bij112 = bij =% foralli.

We compute one full rotation, i.eT, = &, and fixA = At/Ax = x/6. Assuming that the
maximal transport velocity i§/2, this corresponds to a CFL number of roughly 0.74.
First, we consider smooth initial data. bet:= 0.5, yo := 0, rg := 0.3,
r(x, y) i= (X = X0)? + (y = Y))2,
and
C[3@+cosmr(x, y)/ro)?, ifr <o,
Po(X,y) = .
0, otherwise

For the MoT-ICE-POthe EOCs increase slowly toward unity both lit and L> (see
Table II). The error is very large on the coarser grids, and the convergence is initially sl

TABLE Il
EOCs for a Smooth Rotating Hump

ix L, EOC Lo EOC Height
MoT-ICE-PO

40 9.528519e-01 — 7.129756e-01 — 0.287

80 6.479957e-01 0.56 5.459218e-01 0.39 0.454
160 3.994583e-01 0.70 3.690224e-01 0.56 0.631
320 2.277596e-01 0.81 2.228099e-01 0.73 0.777
640 1.228174e-01 0.89 1.239005e-01 0.85 0.876

MoT-ICE-P1 with unlimited central differences

40 2.596250e-01 — 2.056520e-01 — 0.794

80 5.505040e-02 2.24 4.491245e-02 2.20 0.961
160 1.091899e-02 2.33 8.892373e-03 2.34 0.995
320 2.426323e-03 2.17 1.967944e-03 2.18 0.999
640 5.822946e-04 2.06 4.673955e-04 2.07 1.000

MoT-ICE-P1 with WENO limiter

40 4.351708e-01 — 4.749751e-01 — 0.525

80 1.201747e-01 1.86 2.327933e-01 1.03 0.767
160 3.337591e-02 1.85 1.018161e-01 1.19 0.898
320 6.350393e-03 2.39 4.022132e-02 1.34 0.960

640 1.030164e-03 2.62 1.230235e-02 1.71 0.988
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TABLE 11l
EOCs for a Rotating Cylinder

MoT-ICE-PO MoT-ICE-P1, WENO limiter
ix Ly EOC Height Ly EOC Height
40 7.012658e-01 — 0.868 3.758964e-01 — 0.993
80 5.046964e-01 0.47 0.968 2.278516e-01 0.72 1.000
160 3.618134e-01 0.48 0.990 1.398394e-01 0.70 1.000
320 2.583896e-01 0.49 0.995 8.588859¢e-02 0.70 1.000
640 1.837913e-01 0.49 0.997 5.270885e-02 0.70 1.000

This is natural, since the initial data are not well resolved on the coarse grids, where t
appear as a sharp peak rather than a smooth hump.

For theMoT-ICE-P1with unlimited central differences the EOCs are better than 2 bot
in L* and L> and they converge toward 2 as the grids are refined. FOMtiBICE-P1
with the WENO limiter, the EOCs ih* are slightly below 2 in the beginning. However, as
the grid is refined, the EOCs increase drastically and well beyondl2?lrthe EOCs start
slightly above unity on the underresolved coarse grids, but they show a similar dram
increase as the grids are refined. In our experience, this behavior is typical for the cer
WENQO limiter.

5.3. Rotating Cylinder

Next, we consider the rotating cylinder:

1 ifr <rg,

X,y) = )
“o(x.y) {0 otherwise

Since the solution is discontinuous, we only give the experimental orders of converge
in L (see Table Ill). We also display the maximal height of the cylinder, to see if it |
excessively smeared or whether there are overshoots in the numerical solution.

For theMoT-ICE-PQ the EOCs tend toward 0.5 as expected for a linear problem anc
scheme based on piecewise-constant reconstructions. The maximal height of the cyli
increasestoward 1.0 asthe grid is refined. For the unlinvite® ICE-P 1(we omit the table),
the EOCs are decreasing from 0.78 toward 0.70. As should be expected for a discontini
solution computed with unlimited piecewise-linear reconstructions, there is an overshoc
9 to 11% of the height of the cylinder. TiMoT-ICE-P1with the WENO limiter converges
at rate 0.70, produces no overshoots, and yields only slightly ldr§esrrors than the
unlimited scheme. As can be seen from the maximal height especially on the coarser g
the computation is much less smeared than the one wittvitheICE-PQ The error on
the finest grid is a factor 3.5 smaller for the limit&tbT-ICE-P1than for theMoT-ICE-
PO. Figure 10 shows that the cylindrical shape of the solution is nicely preserved by b
versions of the scheme.

5.4. Shallow-Water Equations: 1-D Riemann Problem

In the following two examples, we compute solutions to the shallow-water equatiol
i.e., Eq. (15) withy = 2 andx = 0.5. We use the wave model (20)—(22). First we conside
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050
MoT-ICE-P0

MoT-ICE-P0

D,

050
MoT-ICE-P1, WENO

MoT-ICE-P1, WENO
FIG. 10. Rotating cylinderMoT-ICE-POandMoT-ICE-P1(160x 160 points).

the one-dimensional Riemann problem with initial data

(1,0,0 forx <O,

( 9 u’ v) = {
r (0.1,0,00 forx > 0.

We compute the solution at timie = 0.8, using a CFI number of 0.8. Note that in this
situation, theMoT-CCE-POcoincides with the Steger—-Warming splitting. As already re-
ported by Steger and Warming in 1981, this scheme produces kinks, or glitches, at s
points, where the magnitude of the velocity agrees with the sound velagity, ./o. This
can be seen in Fig. 11. The kink near the right corner of the rarefaction wave persists
der grid refinement. The numerical solution becomes discontinuous in a region where
exact solution is smooth. THdoT-ICE, both with piecewise-constar) and piecewise-

linear (P1) reconstruction produces nonoscillatory results with the expected resolution (:
Figs. 12 and 13).

5.5. Shallow-Water Equations: 2-D Explosion

In her dissertation [26], Morel computes a radially symmetric explosion for the shalloy
water equations with data

(1,0,00 for (x*+y?»¥2 <03

(p,u,v)(X,y,0) = {
(0.1,0,0) for (x2+y?®¥?2 > 0.3.

Here we compute this solution over the squaré,[1]° with CFL = 0.8. Figure 14 shows

contour plots of thoT-CCE-PQtheMoT-ICE-PQ and theMoT-ICE-Plat timeT = 0.6.

It is well known that solutions to radially symmetric problems computed with a firs

order Roe or Godunov scheme on a Cartesian grid may become square or diamond st
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1
1
05 05
0 - 0
b 0 1 -1 0 1
MoT-CCE-P0, Density, Az = 5 MoT-CCE-P0, Velocity, Az =
1
1
0.5 03
0 . 0 .
-1 0 1 -1 0 1
MoT-CCE-P0, Density, Az = 345 MoT-CCE-PQ, Velocity, Az = 15

FIG.11. Shallow-water Riemann problemloT-CCE-POwith 80 and 320 points. Solid line is tthoT-ICE-
P21 with 800 points. Note the kink of thoT-CCEat the sonic point near the right corner of the rarefaction wave
which persists under grid refinement.

1
05
0 - 0 -
-1 0 1 1 0 1
MoT-ICE-P0, Deasity, Az = 315 MoT-ICE-P0, Velocity, Ax = %0‘
1
1
05 05
0 0
-1 0 1 -1 0 1
MoT-ICE-P0, Density, Az = 35 MoT-ICE-P0, Velocity, Az = &5

FIG. 12. Same as Fig. 11, but féloT-ICE-PO.There is no kink at the sonic point.
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0.5

0 s 0 7L s
1 0 1 4 0 1
MoT-ICE-P1, Density, MoT-ICE-P1, Velocity, Az = %
Az = 4—10
1

1
05 05

0 . 0

-1 0 1 -1 0 1
MoT-ICE-P1, Density, Az = 155 MoT-ICE-P1, Velocity,
Ar = %

FIG. 13. Same as Fig. 11, but faMoT-ICE-P1.There is no kink at the sonic point, and the solution is both
accurate and nonoscillatory.

(see for example [22]). The leading shock computed withNteel-CCE-POis radially
symmetric. There are, however, grid-orientation effects at the sonic points in the intel
of the solution. TheMoT-ICE, especially with piecewise-linear reconstruction, produce
perfectly radially symmetric results. Details can be seen in Figs. 15-17, where we ¢
sections along the-axis and the diagonal against the results of a resolved one-dimensio
calculation. The kinks produced by thl T-CCE-Pare clearly visible, but they decrease in
magnitude as the grid is refined. Once more Nttd-ICE-POproduces no such kinks. The
higher-order-accuratdoT-ICE-P1produces a better solution on a grid of 16060 points
than the first-ordeMoT-ICE-POon a 640x 640 grid. On the finest grid, thdoT-ICE-P1
fully resolves this challenging problem.

MoT-CCE-P0 MoT-ICE-P0 MoT-ICE-P1

FIG. 14. Explosion prolem for the shallow-water equations usitagl-CCE-PQMoT-ICE-PQ andMoT-ICE-
P1for a grid of 160x 160 points with 25 contours of water height.
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03

02t

01 t 0.1

z-axis, 160 points diagonal, 160 points

02+

01 : 01 *
-f 0 1 -1 0 1

z-axis, 320 points diagonal, 320 points

03 03

02

0.1 : 01

z-axis, 640 points diagonal, 640 points

FIG. 15. Explosion problem for the shallow-water equations us#ar-CCE-PO Plots of water height for
grids of 160x 160, 320x 320, and 640« 640 points. Left column: cuts along tReaxis. Right column: cuts along
the diagonal. Solid line: one-dimensional solution with 3200 points. Note the kinks at the sonic points.

Note that on the fine grid there are two points in the shock region foihie ICE-P],
three points for th&1oT-ICE-PQ and four points for thiMoT-CCE-POFrom these pictures,
the results of thd&1oT-ICE-P1seem to be of the same quality as those computed by Mor
[26] using CLAWPACK.

5.6. Comparison of Efficiencies

Let us give a first comparison of efficiencies. Morel [26] reports thatMb&-CCE-P0Q
Van Leer’s flux-vector splitting, and CLAWPACHK % (using the first-order Roe solver



330 SEBASTIAN NOELLE

03

02

01 . ol .
1 0 1 B 0 1

z-axis, 160 points diagonal, 160 points

03 03

02 02

01 - 01

z-axis, 320 points diagonal, 320 points

03 ' 03

02 02

01 * 01
-1 0 1 1 0 1

z-axis, 640 points diagonal, 640 points

FIG. 16. Same as Fig. 15, but féloT-ICE-P0.Note that the kinks at the sonic points have disappeared.

without transverse wave propagation) all use the same amount of cpu time (say one |
unit). CLAWPACK T takes 1.5 units, and the first-order fix at sonic points propose
by Morel takes 2.9 units. Our preliminary experience with MhaT-ICE is the following:
the MoT-ICE-PQ which is consistent at sonic points, takes 0.9 to 1.0 units and is hen
as fast as standard first-order schemes. Wiod-ICE-P1takes 2.0—2.2 units, which is
the same as the second-order CLAWPATRK?. This compares favorably with tHdoT-
CCE-P1presented in [9], which is consistent at sonic points, but needs 10.5 units of ¢
time.
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03

02

01 . 01 .

z-axis, 160 points diagonal, 160 points

03

02

0.L - 01

z-axis, 320 points diagonal, 320 points

02 02

0.1 - 01 -
Bl 0 1 1 0 1

z-axis, 640 points diagonal, 640 points

FIG. 17. Same as Fig. 15, but fd(oT-ICE-P1.There are no kinks, and the resolution is drastically improved.

To fix units, the two-dimensional shallow water explosion described in Section 5.5 ahc
computed with theMoT-CCE-POon a grid of 160x 160 points, with Courant number
CFL=0.8 (74 timesteps), took 17.8 seconds of cpu time on a personal computer v
500 MHz Pentium Ill processor.

6. CONCLUSION

Fey’smultidimensionaMethod of Transportis an interesting alternative to schemes bas
on one-dimensionasolution operators. Motivated by an inconsistency of the first-orde
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version of the method at sonic points, which also occurs for other upwind finite-differen
schemes, we have developed a uniformly consistent variant of Fey’s scheme. Our |
scheme s still based on Fey’s multidimensional wave models, and on a decompaosition of
multidimensional system into scalar advection equations that is similar to his. The key r
idea is a different approximation of the characteristic flow at the level of multidimension
scalar advection equations. Fey's method uses a local approximation of the character
flow to propagateellsforward in time, while our approach tracks théerfacedbetween the
cells backward in time. To distinguish between the two approaches, we call Fey’s sche
MoT-CCEfor cell-centered evolution and our new scheh&T-ICE for interface-centered
evolution.

For the MoT-ICE, we have proven uniform first- and second-order consistency. In
tial numerical experiments confirm second-order accuracy for smooth solutions and hi
resolution nonoscillatory shock-capturing properties for discontinuous solutions. The n
scheme produces excellent radially symmetric solutions for a two-dimensional shallc
water explosion problem.

The main advantage of tivoT-ICE-P1seems to be its efficiency: it needs about the sam
cputime as a second-order version of LeVeque’s wave-propagation algorithm CLAWPAC
which, according to numbers given by Morel, is 4 to 5 times faster than the second-orc
accurateMoT-CCE-P1developed by Fey, Jeltsch, and co-workers. This gain of efficienc
is partly due to an improved second-order-accurate linerization and decomposition of
nonlinear system into advection equations and to the particularly simple characteri
transport algorithm for the resulting linear advection equations. This simplicity is retain
in the case of three spatial dimensions.

In ongoing joint work with Christian vondrie, we are currently developing the T-ICE
into a fully adaptive, distributed parallel code.
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